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I. INTRODUCTION 

Adiabatic shear is the name given to a localization phenomenon that 
occurs during high rate plastic deformation such as machining, explosive form
ing, shock impact loading, or ballistic penetration. The process is usually 
described as being inititated by thermal softening in competition with rate 
effects and work hardening. Heat generated by plastic work softens the mater
ial so that eventually stress falls with increasing strain. When that occurs, 
the material becomes unstable locally and tends to accumulate essentially all 
of any additional imposed strain in a narrow band. In turn the local heating 
increases, and the process is driven further. As the localization intensi
fies, substantial gradients of temperature build up so that in the later 
stages of development heat flows out of the band thus tending to offset the 
thermal buildup in the band. 

1 2 In two previous papers Wright and Batra' have described the results of 
computations that simulate the formation of a single shear band from a local 
temperature inhomogeniety in a simple material. Strain gradients in the cal-

culations reach approximately 0.2 per ~m, and experimental evidence3 indicates 
gradients that ultimately are orders of magnitude larger. Therefore, it has 
seemed worthwhile to reformulate the theory to include gradient effects. This 
has been accomplished by modifying the dipolar theory due to Green, McInnis, 

4 and Naghdi to include a rate effect. 

II. FORMULATION OF THE PROBLEM 

In order to concentrate on fundamentals, the process has been idealized 
as one dimensional shearing of a finite block of material. Accordingly the 

4 three dimensional theory of Green, et al is summarized here for one dimen-
sion. In addition, the yield function is taken to depend on the plastic parts 
of strain rate and gradient of strain rate as well as the usual variables. 

A one dimensional shearing motion can be expressed as 

x = X + U (Y, t), y = Y, z = Z for -H < Y < +H 

If it is supposed that on any fixed surface Y is constant, surface tractions, 

T, do work against the velocity,. x, and hypertractions, a, do work against the 

velocity gradient, i,y, then the one dimensional expressions for balance of 

linear momentum, energy, and entropy may be written as equations (2). 

T 'y + pb = px 

. 
pU = TX,y + (ax,y) 'y - q,y + P (OX,y + r) (2) 

q 
P Tn - f T, Y + q, y - P r > 0 
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In these equations band c are the simple and dipolar body forces 
respectively, U is the internal energy, q is heat flux, r is the volumetric 
supply of energy, T is temperature, n is specific entropy, and p is mass 
density, which is constant. The superimposed dot and the comma followed by Y 
indicate differentiation with respect to time t and the material coordinate, 

4 
Y, respectively. Following Green, et al, it will be convenient to define 
another stress by the equation 

s -

Equations (2) hold for any dipolar material, either elastic or plastic, 
for motions of the type given by (1). 

Now define shear strain and shear strain gradient by 

d ::: Y'Y = X'YY 

and suppose that these can both be decomposed into elastic and plastic parts. 

y=y +y, e p d = d + d e p 
(4) 

None of Ye ' Yp' de or dp are necessarily gradients, but of course their sums 

Y and d must be the gradients of x and y, respectively. Next let K be a 
measure of plastic work hardening. Finally, in the same spirit as classical 
plasticity, a scalar yield or loading function f is assumed to exist, but here 
it is taken to depend on plastic strain rates, as well as stresses and temper
ature, 

= K 

In general this and other plastic constitutive functions could depend on 
elastic and plastic strains as well, but that possibility will be ignored in 
this paper unless explicitly stated otherwise. 

The static yield surface is given by (5) with y = d = 0, and for p p 
quasi-static deformations a continuity argument for neutral loading, as 
advanced in Ref. 4 leads to the following reduced forms for the plastic rates. 

yp = Aa., (6) 

where a. and B are constitutive functions that depend only on s, a, T, and K. 

A 

The multiplier A is proportional to f = fss + faa + fTT, where the subscripts 
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denote partial differentiation with respect to the arguments, and Yp = dp = 0 
in evaluating the derivatives of f. 

Now let it be assumed that (6) holds even when Yp ~ 0, dp ~ 0, so that in 
the general case (5) becomes 

f( s, a, T, Aa( s, a, T, K), AS( s, a, T, K» = K 

and the criterion for elastic or plastic loading is simply 

f(s, a, T, 0, 0) i K, elastic; 
(8) 

f(s, a, T, 0, 0) > K, plastic. 

To make sense the derivative fA' obtained from (7) must be negative for all 

values of the other arguments. Then if plastic flow is occuring according to 
(8), A may be found from inversion of (7), and because of the assumed 
monotonicity of f with respect to A, there will always be a unique solution 
with A > O. With the assumption that U, s, a, T depend on the variables 
Ye ' de' n and that q depends on the same variables plus the gradient T,y' 

standard thermodynamic arguments give 

au T = --, s = an 
au p---, a = ay 

e 

The energy and entropy laws now reduce to 

(9 ) 

(10) 

where Yp 

tion. 

= d = 0 during elastic deformation and ~ 0 during plastic deforma
p 

III. CONSTITUTIVE EQUATIONS AND NONDIMENSIONAL FORMS 

For computational purposes simple constitutive equations have been chose 
as follows: 

n - no 

pU 1 2 19- 2 d2 + pT c(e c -1) = 2lJYe + lJ 2 e 0 

( 11) 

K h( K) 
(sy + ad ), q -kT,y = = 

K P P 
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a = s, 
1 

B = (11 cont.) 

In (11)1 ~ is the usual elastic shear modulus and t is a characteristic 

material property with the dimensions of length, To is a reference tempera

ture, and c is specific heat. With this simple choice for the internal energy 
there is no thermoelastic effect and no thermal expansion. The stresses and 
the temperature follow from (9). In (11)2 the function h(K) is the plastic 

slope of a reference isothermal shear test, which is chosen to be 

h = n 
~~ 

1 
n (12) 

Here K is the initial yield stress, n is the work hardening exponent, and W o 0 

may be chosen to fit the initial slope of an empirical curve of stress versus 
plastic strain. Equation (11)2 states that K evolves according to the plastic 

work done no matter what the conditons of the test. Equation (11)3 is 

Fourier's law and equations (11)4 and (11)5 have been chosen in a simple form 

that is dimensionally correct and leads to positive plastic work. Finally in 
(11)6 the function f has been chosen to be made up of three multiplicative 

factors involving the stresses, the temperature, and the plastic rates, 
respectively. In (11)6 a is the coefficient of thermal softening, b is a 

characteristic time, and m is the strain rate exponent. 
of t could be different in each of the four places that 
but such complexity is not warranted for the time being 
microscopic theory available for guidance. 

In general the value 
it appears in (11), 
since there is no 

In nondimensional form the full set of equations in the absence of body 
forces and supply of energy may be written as follows 

Momentum: {s - ~a,y),y = pv 

Energy: 

Constitutive: s = ~(v'y - Yp)' y = As 
P 

10 
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0 = t\.l(v,yy - dp) , dp = 
A 
I 0 

h( K) 
. 1 

1 
(sy + tod ), h n - -

K = = Jjj- K n K p P 
0 

(13 cont.) 

A = 0 otherwise 

In (13) the temperature T has been replaced by the temperature increase 
e = T - T. The nondimensional variables are related to their dimensional o 
(barred) counterparts as follows: 

Y = Y/H, t = tyo 

y = y, d 
. 

= dH, yp = y Iy d = p .0' p 

. . 
a H/y , A = A K /y 

p 0 0 0 

( 14) 

Besides m, n, and ~o there are six other nondimensional parameters, which are 

related to their dimensional (barred) counterparts as follows: 

aKO/PC, b bYo' 
- -' 2 £ VH a = = k = k/pcYoH , = 

(15) 

iilKo' 
- 2. 2/K ]..I = p = pH Y 

0 0 

In (14) and (15) Yo = v (H, t)/H is the average applied strain rate between 

the boundaries ! = + H. 

IV. HOMOGENEOUS SOLUTIONS AND PERTURBATIONS 

Equations (13) have homogeneous solutions with v = Y and all other 
dependent variables independent of Y. With initial values taken to be s(O) = 
K(O) = 1 and e(O) = 0(0) = 0, bhe solution for s, K, and e is exactly the same 
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1 2 as for a simple material (see Wright and Batra ' ) and 0 is identically zero. 
Figure 1 shows several curves for homogeneous solutions of equations (13) 
obtained for particular choices of the parameters. With a = b = 0 there is no 
thermal softening and no rate effect so the resulting curve is simply the 
slow, isothermal stress/strain curve, called the reference curve, from which 
the function h(.) was derived. With a = 0, but with a finite value for b, the 
curve shows the isothermal response at a high rate of deformation. With 
finite values for both a and b the curve shows the adiabatic response at a 
high rate of deformation. The nondimensional parameters chosen here are the 
same as those listed in Ref. 2 namely 

p = 3.928 X 10-5 

n = 0.09 

k = 3.978 X 10-3 

,I, = 0.017 0/ 0 

a = 0.4973 

b = 5 X10
6 

~ = 240.3 

m = 0.025 

The value for ~ is immaterial for the homogeneous response as are P and 
k. The adiabatic response curve is typical. Initially the stress rises elas
tically above the reference curve, but as the overstress increases, plastic 
straining sets in, the temperature rises, and the response softens relative to 
the isothermal response. Eventually thermal softening wins over work and rate 
hardening, so that the stress passes through a maximum (indicated by P in the 
figure) and then decreases with further deformation. The general character of 
the homogeneous response is well understood and has been reported many times 
in the literature, although the way the response changes with the various 
parameters depends on the particular model used for the thermo/viscoplas
ticity. 

Once peak stress has been passed the material becomes extremely sensitive 
to inhomogeneities, and the deformation has a strong tendency to localize. To 
examine this behavior for a dipolar material and to compare the results to 
previous calculations for a simple material, calculations have been made for 
the response following a small temperature perturbation. At the point marked 
I in Figure 1 the computed homogeneous response was modified by adding a 
smooth temperature bump (height 0.1 and width 0.5) to the basic homogeneous 
response. After recalculating s so that the yield condition in (13) is still 
satisfied with the new temperature distribution, the problem was restarted as 
a new initial-boundary value problem with all other initial values as cal
culated previously and with boundary values at Y = + 1, 0 taken to be 
v = 1, 0 and 0 = e,y = 0, O. With these boundary values, the average strain 

rate in the strip is the same as in the homogeneous calculation and the 
material remains adiabatic overall. The same approach was used in Refs. 1 and 
2 for a simple material, but now the new material parameter ~ is nonzero. 

-4 -2 Computations have been made for ~ = 0 ,10 and 10 • After casting the 
equations into a weak form, solutions were found using the finite element 
method for spatial discretization and an implicit Crank-Nicolson scheme to 
march forward in time. Previously a forward difference method was used for the 

1 2 time integration ' , but the step size was necessarily very small for the 
dipolar case. 

Typical results are shown in Figures 2, 3, 4 and 5. Figure 2 shows the 
plastic strain rate in the center of the band as a function of the average 
applied strain. The nondimensionalization is such that increments of time are 
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exactly equal to inorements of the average applied strain, so the curve may be 
interpreted equally well as a time plot. After a brief interval during which 
the field variables regain their essential balance, the central plastic strain 
rate begins a slow but aooelerating olimb. Eventually it turns up rather 

~ 4 sharply for ~ = 0 or 10 and somewhat less sharply for ~ = 10 ,the first 
two cases being virtually indistinguishable. Also, shown is the result from 

2 previous oaloulations with ~ = 0, where the strain rate increases even more 
dramatioally. The delay in the response for the present oase relative to the 
previous one with ~ = 0 is probably due to a nonphysical damping, which is 
introduoed by the Crank-Nioolson soheme as oompared to the forward difference 

-2 method. The result for ~ = 10 relative to the other two cases shows the 
same stiffening effeot due to the material length £ that was reported in Ref. 
2. It is olear that the rate of increase of plastic strain rate can be 
substantially retarded if £ is large enough. 

All oases oaloulated 80 far show the development of a late stage plateau, 
but the computed value is a numerical artifaot and is not a physical result. 
Since v = 1 at the boundary Y = 1, it follows that 

. As shown in Figure 3, the plastic strain rate builds up in the center, 
but it deoreases in the outer region. In the plateau region of the calcula
tions, the plastio strain rate is nonzero at the center but falls to zero at 
Y = 0.1. With linear interpolation the nonzero part of the distribution is 
triangular, so the level of the plateau is effectively caused by the length 
scale that is introduoed through the computational grid. In the previous 

1 2 results' a more oomplicated interpolation scheme and a finer grid were used, 
which allowed the plateau to be delayed until the plastic rate reached approx
imately 80, as indicated in the figure. Although the level of the plateau is 
nonphysical, the fact that it is very likely fixed by the length scale of the 
grid suggest that one might expect a true plateau to develop where the level 
would be determined by the physical length scales of the problem. Two such 
physioal lengths, one arising from thermal conductivity and one from viscous 
stress effects, were identified in Ref. 1 and the parameter £ is a possible 
third one. All three length scales may be very small and beyond convenient 
numerical resolution. 

The cross plots of plastic strain rate at increasing values of average 
strain, as shown in Figure 3, are taken well before the plateau is reached, 
and so should be accurately representative of the progressive localization 
that ocours. The five crosses on the curves in Figure 2 correspond to the 
five ourves in Figure 3. As the deformation continues, the plastic strain 
rate builds up in the center, but decreases in the outer regions. The rela
tive stiffening of the dipolar material can be seen clearly in Figure 3 as 
well. For example, when the average strain reaches 0.093, the dipolar case 

4 ~ with £ = 10 has reached only half the value for the cases £ = 0 or 10 ,and 
obviously continues to develop at a much slower rate. Since the peak in 
plastic strain rate is lower for larger values of ~, naturally the distribu
tion is broader and the rate falls more slowly in the outer regions, as well. 
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Temperature plots are not shown, but the results are similar to the 
previous calculations. At first the temperature follows the path of the 
homogeneous case quite closely, but as the deformation localizes so does the 
temperature distribution with a peak forming in the center and a plateau 
forming in the outer regions as the plastic heating falls to zero. 

-4 In all calculations so far the case for ~ = 10 shows essentially no 
difference from the simple material. The reason for this is shown dramati
cally in Figure 4, which shows the dipolar stress distribution at several 
values of time. The assumed symmetry of the problem requires that the 
dipolar stress be an odd function of Y, and hence that it vanish at Y = o. 
The peak of the distribution for ~ = 10-2 lies near Y = 0.2 and moves somewhat 

toward the center for increasing time. 
shows a similar shape, but now the peak 

-4 
The dipolar distribution for ~ = 10 
value is only about 2% of the peak 

-2 value for ~ = 10 at the same time. For the smaller value of ~ the dipolar 
effect is so weak that it has no effect on the calculations prior to the 
formation of the false plateau. 

Figure 5 shows the computed values of shear stress as a function of 
average applied strain. At first the stress for each of the perturbed cases 
follows the homogeneous case quite closely, but eventaully it deviates mark
edly. The stress remains nearly constant through the cross section at all 
times until the strain rate accelerates sharply upwards. Then the stress 
begins to fall, first in the center and then in the outer regions. The start 
of the drop in stress is clearly evident in the computed results, although in 
every case the curves have been drawn past the probable limit of validity (the 
tick mark on the curve). Here again the stiffening effect of the dipolar 
stress is evident in the delay and rate of departure from the homogeneous 
case. It is also interesting to note that even though the dipolar stress 
attains significant values, and the stiffening effect is clearly evident in 
the distribution of plastic strain, there is little difference between the 
shear stress s and the traction T, as might have been expected from equation 
(3) • 

v. DISCUSSION AND CONCLUSIONS 

In this paper a formulation has been given for shearing of thermo/visco
plastic dipolar material with heat conduction. Because of thermal softening, 
the stress at a point in the material may decrease with further straining, and 
so the material may tend to localize in the same manner as for a simple mater
ial. The dipolar, or gradient, effect has been added because large strain and 
temperature gradients form in the localized region. It has been found that 
this additional constitutive property has a stiffening effect relative to a 
simple material. That is, for the same perturbation the onset of localization 
is delayed and the rate of growth of the perturbation decreases with increas
ing dipolar strength. It has been found that the Crank-Nicolson scheme for 
stepping forward in time allows a much larger time step to be used than the 
simple forward difference method, but it also seems to introduce some artific
ial damping. 
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